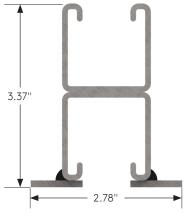

Tate Strut


Steel Structural Ceiling Grid System for Data Centers

Strut Profile

2" 0.25" 0.66"

Light Infill

Straight Connector

Internal Splice Support Connector

U-Shaped Connector

Field Connector

Simple Channel Nut Assemblies are used for Strut connections

Open slots for connecting cable trays, utilities and other accessories via Channel Nuts

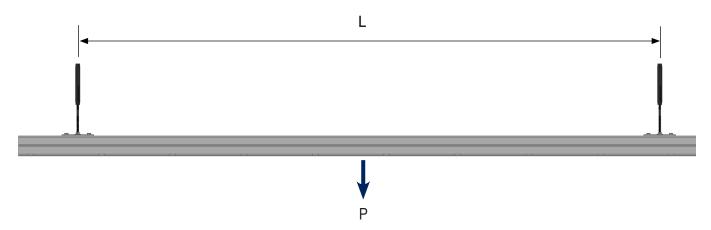
Structural Grid Specifications

- Structural suspended ceiling grid system consists of steel strut with Light Structural Infill
- White, Black or Custom powder coat finish
- Steel Strut profile
 - Center-on-Center Grid Spacing can be selected to accommodate project specific specs (See page 5)
 - Max static/uniform load based on span (table 1)
 - Continuous slot on top and bottom of Steel Strut
 - Capable of supporting cable trays, caging, and other heavy duty accessories
- Light Infill
 - Center-on-Center Grid Spacing can be selected to accommodate project specific specs (See page 5)
 - Light Structural aluminum extrusion
 - Capable of supporting ceiling tiles, light fixtures, and other lightweight flange supported accessories

Components

- Steel Strut Grid
 - Steel Strut Main Runner
 - Steel Strut Structural Tees
 - Straight Connectors
 - U-Shaped Connector
 - Internal Splice Support Connector
 - 1/2"-13 Channel Nut with Spring
 - 1/2"-13 x 1.5" Hex Head Bolt
 - 1/2"-13 x 7.85" lg Turnbuckle w/ Starter Rod
- Light Structural Infill
 - Light Structural Main Runner
 - Light Structural Infill Tees
 - Light Structural Bridge Connector
 - Field Connector
- Factory Applied Gasket available upon request
- Hold Down Clips available upon request

Components by Others


- Ceiling tiles, light fixtures, or other accessories
- All-thread and attachment to building structure
- Channel Nuts and all-thread to attach equipment below steel strut
- Aluminum Perimeter Angle

2 of 12

Table 1: Performance Criteria based on Span Length

To determine load capacities and corresponding deflections based on span lengths, use this chart

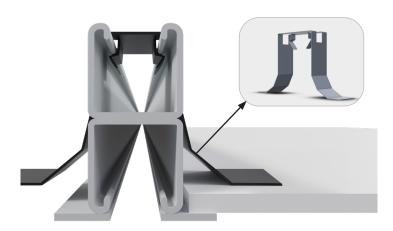
On Center Hanger Spacing	Max Uniform Load (lbs/SF)	Max Safe Working Load ¹ (Point Load) (lbs)	Mid Span Deflection @ Max Safe Working Load (in)	Safety Factor
4' x 4'	219	1750²	0.17	2x
5' x 4'	175	1750²	0.33	2x
6' x 4'	145	1667	0.55	2x
7' x 4'	125	1429	0.75	2x
8' x 4'	109	1250	0.97	2x
6' x 6'	97	1667	0.55	2x
8' x 6'	72	1250	0.97	2x
8' x 8'	54	1250	0.97	2x

^{1.} Hanging locations are to be no less than the length of the strut span in any given direction

L (Span between Supports) = in

I (Moment of Inertia) = 0.789 in⁴

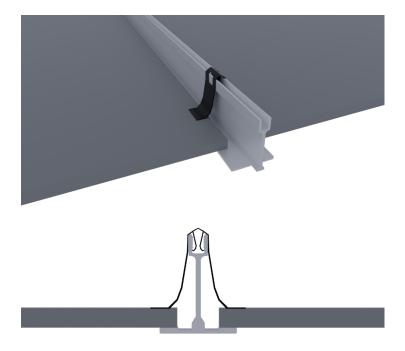
USF (Uniform Load/SF) = $P/(L/12)^2$


E (Modulus of Elasticity) = $30x10^6$ lbs/in²

D (Deflection) = $PL^3/48EI$

^{2.} Maximum point loads are limited by the turnbuckle connections to strut. Turnbuckles are required to be within 12" of a Main Runner Splice

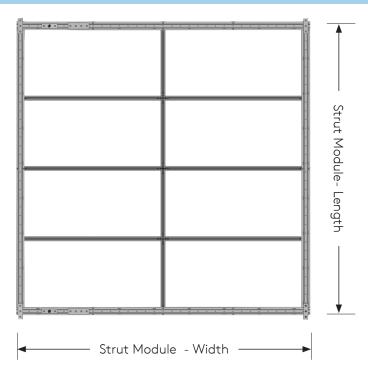
^{3.} All loads provide for a minimum safety factor of 2.



Hold Down Clips

PN44405

- Hold down clips can be provided with the Tate Strut system as an option.
- Two hold down clips are recommended per tile.
- Hold down clips are installed by pressing them into the top thread by hand or lightly tapping them with a mallet.
- Hold down clips are designed for use with 1/2" 1" thick ceiling tiles


Light Structural Infill Hold Down Clips

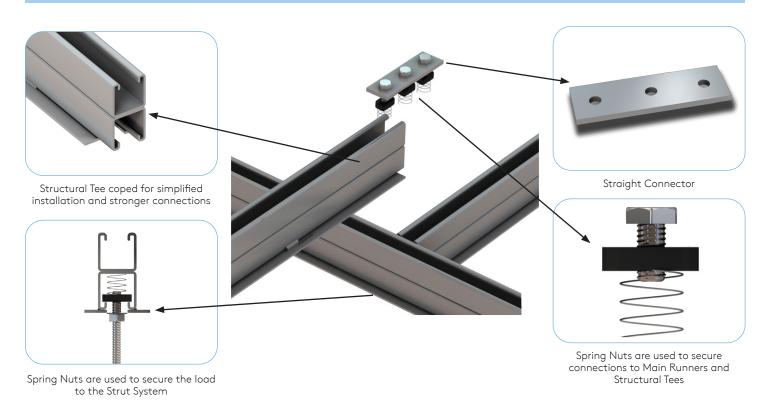
PN44403

- Hold down clips can be provided with the Tate Strut system as an option.
- Two hold down clips are recommended per tile.
- Hold down clips are installed by pressing them into the top thread by hand or lightly tapping them with a mallet.
- Hold down clips are designed for use with 1/2" 1" thick ceiling tiles

Determining Grid Spacing and Tile Sizing: Example

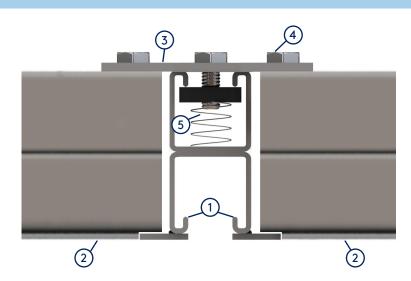
If your requirement is to have the structural grid spacing on hard 24"/48" dimensions, you will need special sized ceiling tiles as follows:

Strut Module Size	Grid Spacing (W x L)	2' x 2' Tile Size (W x L)	2' x 4' Tile Size (W x L)
4' x 4'	48" x 48"		
4' x 6'	48" x 48"		
4' x 8'	48" x 96"		
6' x 6'	72" x 72" 22 - 3/4" x 22 - 3/4" +/-1/8"		22 - 3/4" x 46 - 1/8" +/-1/8"
6' x 8'	72" x 96"		
8' x 8'	96" x 96"		


If your requirement is to have the structural grid spacing to accept standard sized ceiling tiles, your grid spacing would be:

Strut Module Size	Grid Spacing (W x L)	2' x 2' Tile Size (W x L)	2' x 4' Tile Size (W x L)
4' x 4'	50 1/8" x 50 1/4"		
4' x 6'	50 1/8" x 74 3/4"		
4' x 8'	50 1/8" x 99 1/4"	27 7/01 27 7/01 //1/01	23 - 7/8" x 47 - 7/8" +/-1/8"
6' x 6'	74 3/4" x 74 3/4"	23 - 7/8" x 23 - 7/8" +/-1/8"	
6' x 8'	74 3/4" x 98 3/4"		
8' x 8'	99 1/4" x 98 3/4"		

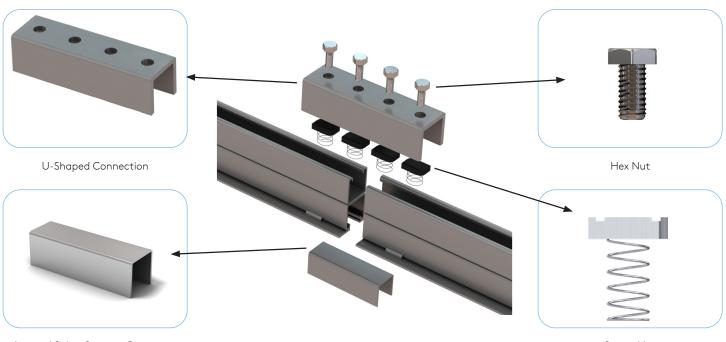
Note: Other spacing options are available.



Straight Connector Assembly

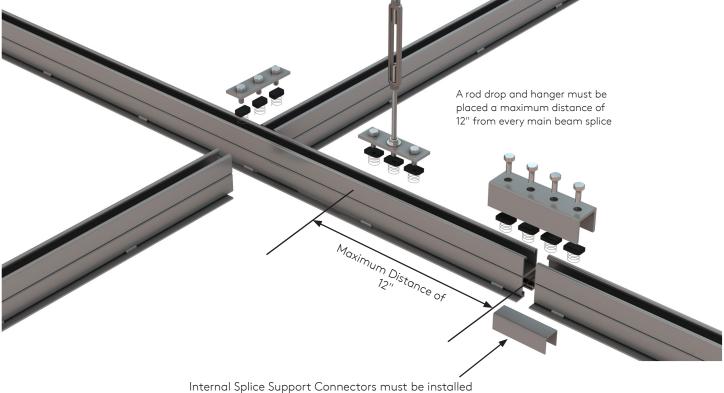
Straight Connector Assembly

- 1. Main Runner
- 2. Structural Tees
- 3. Straight Connector
- 4. Hex Bolt
- 5. Channel Nut and Spring

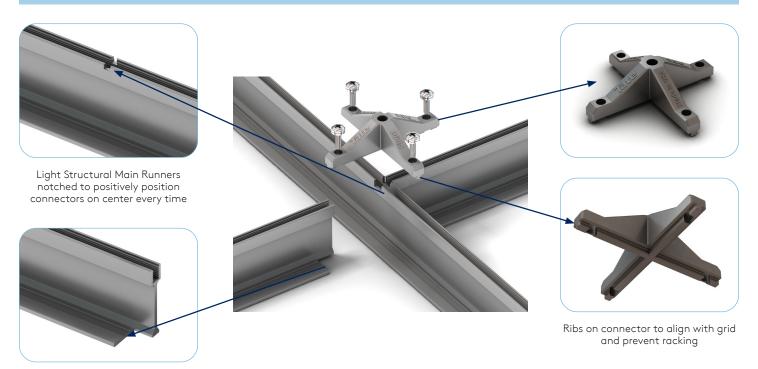


Straight Connector joining two Structural Tees on either side of a Main Runner.

Note all Structural Tees have factory coped ends

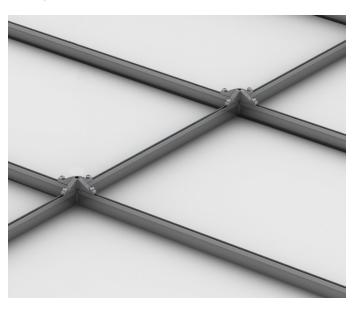


U-Shaped and Internal Splice Support Connector Assembly


Spring Nut

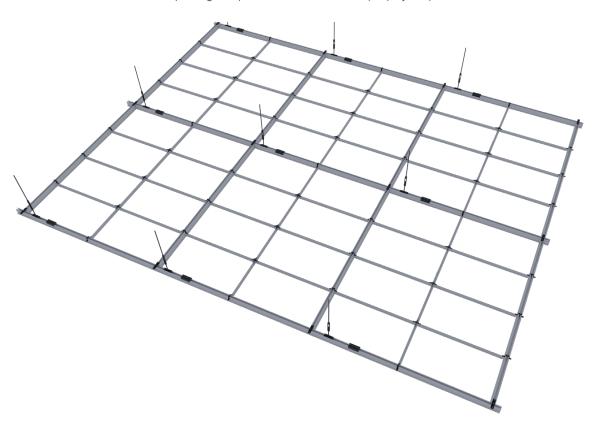
Internal Splice Support Connectors must be installed inside the bottom of a Main Runner Splice

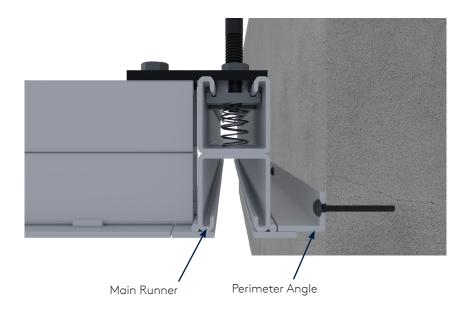
Field Connector Assembly at Light Infill Intersection

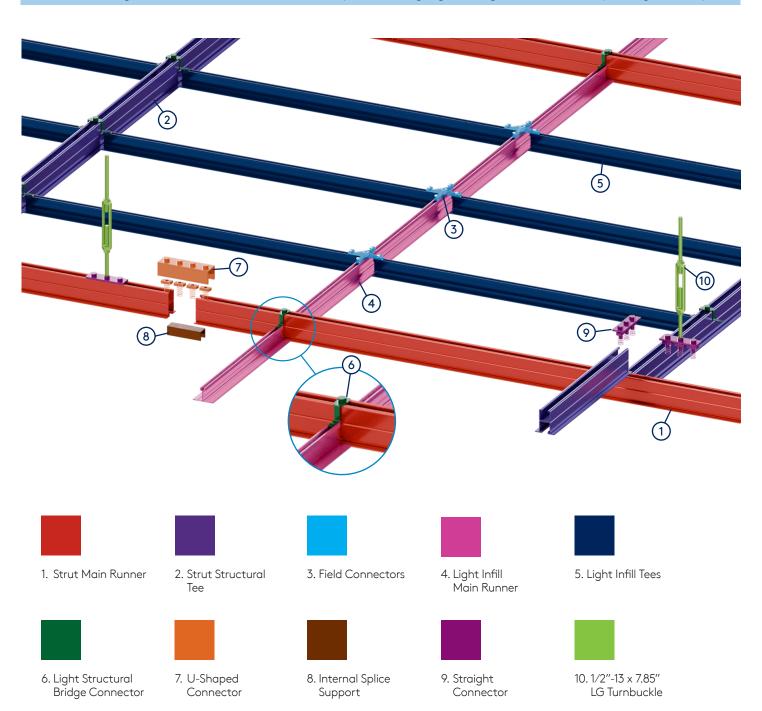

Light Infill coped for simplified installation and stronger connections

Light Structural Infill

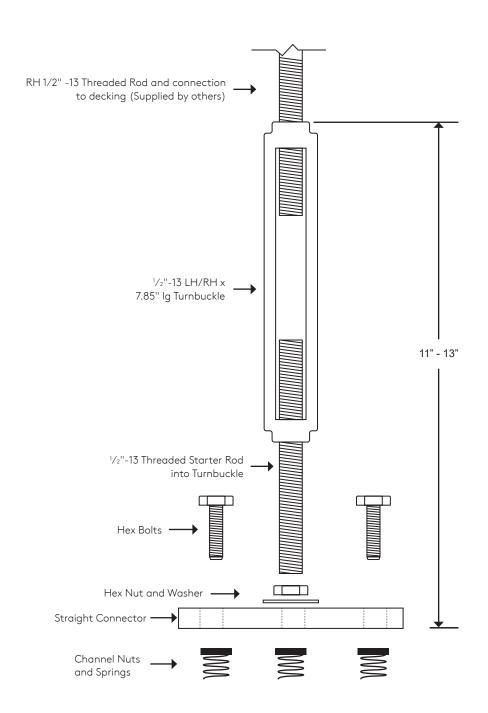
Light Structural Infill Tee with connection to Tate Strut Structural Main Beam via the light structural bridge connector.


Light Structural Infill mains and tees with Field Connectors.


Tate Access Floors, Inc.


Perimeter Angle

Main Runners and Structural Tees are utilized when installing with a floating detail in conjunction with Perimeter Angles. Perimeter Angles can be cut on site to desired length when assembled along the column. Perimeter Angles are bolted directly to the wall with appropriate fasteners for wall type.



2' x 4' Ceiling Grid with 8' x 8' Tate Strut Layout. Hanging Configuration on 6' Spacing (example)

Straight Connector Turnbuckle Assembly

Safety Guidelines

THIS INFORMATION MUST BE SHARED WITH ALL SERVICE PROVIDERS WHO INTEND TO SUSPEND SERVICES FROM THE TATE STRUT SYSTEM

Tate Strut is a structural ceiling system designed to support static vertical loads. When installing services to the Tate Strut System, the following instructions must be adhered to:

- 1. Tate Strut is limited to a maximum point load of 1750 lbs or distributed load of 219 lb/ft2 when suspended on 4'x4' or 4'x5' hangers.
 - a. Exceeding these values may cause a failure in the system.
- 2. Tate Strut is NOT a walk-on ceiling.
- 3. In certain conditions the loading capacity of the Tate Structural Ceiling System may be greater than the loading capacity of the building structure and/or means of attachment to the building structure. Consult with a licensed structural engineer to obtain site specific recommendations regarding the attachment of the Tate Structural Ceiling System and any associated loading to the building structure.
- 4. Structural ceiling systems as a whole shall be analyzed and designed to local codes by a qualified engineer.
- 5. Do not impose a dynamic load on the connection to Tate Strut. During installation of supported services, bracing is required to prevent dynamic load on the Tate Strut ceiling.
 - a. Moment forces imposed on the Tate Strut system may cause failure of the connection between the services and the Tate Strut system.
- 6. All bottom attachments to continuous channel slot should be secured with suitable channel nuts. Be sure all bolts, nuts, and threaded rods are properly tightened down.
- 7. Do not put a load on the system until the installation is complete.

